AT

Karlsruhe Institute of Technology

Software Design and Quality

Beagle

Implementation Report

Annika Berger, Joshua Gleitze, Roman Langrehr,
Christoph Michelbach, Ansgar Spiegler, Michael Vogt

14th of February 2016

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek
Advisor: M.Sc. Axel Busch
Second advisor: M.Sc. Michael Langhammer




Karlsruher Institut fiir Technologie
Fakultat fir Informatik

Postfach 6980

76128 Karlsruhe



1 Design Changes






2 Implemented Tasks

Each task should be implemented in the week it belongs to and tested in the week after
that.

2.1 Changes to the Implementation Plan

We decided to split up the PCM task (#050) into two:

« In #050A, the loading part should be implemented (read the PCM repository and
store the information on the blackboard). This should be done in the first week.

« In #050B, the storing part should be implemented (convert the evaluable ex-
pressions from the blackboard to stochastic expressions and store them on the
blackboard). This should be done in the last week.

2.2 Mandatory Tasks

All mandatory tasks have been implemented.

Week 1(2016-01-11 - 2016-01-17)

Task: SEFF Classes

Nr: #040

Description/Classes: | Implement SEFFLoop, SEFFBranch,
ResourceDemandingInternalAction ExternalCallParameter.

Depends on: -

Implemented by: Roman Langrehr

Tested by: Annika Berger



2 Implemented Tasks

Task: PCM Repository Loader
Nr: #050A
Description/Classes: | Create a class that provides all information of the PCM which is

relevant for Beagle and a factory that uses this information to create
the SEFFLoops, SEFFBranches, ResourceDemandingInternalActions
and ExternalCallParameters.

Depends on:

#040 (SEFF classes)

Implemented by: Ansgar Spiegler

Tested by: Christoph Michelbach
Task: Blackboard

Nr: #060
Description/Classes: | Implement Blackboard.

Depends on:

(Not depending on #050 as the Blackboard only needs the class stubs
for SEFFLoop, SEFFBranch, Resou rceDemandingInternalAction,
ExternalCallParameter and the
ParameterisationDependentMeasurementResult subclasses and not
their functionality).

Implemented by: Michael Vogt

Tested by: Ansgar Spiegler

Task: Blackboard Views

Nr: #070

Description/Classes: | Implement Read-0Only Measurement Controller Blackboard View,

Measurement Controller Blackboard View,

Read-0Only Measurement Result Analyser Blackboard View,
Measurement Result Analyser Blackboard View,

Read-0Only Proposed Expression Analyser Blackboard View,
Proposed Expression Analyser Blackboard View.

Depends on:

(Does not depend on #060 as the blackboard views only need the
blackboard’s method stubs.)

Implemented by:

Micheal Vogt

Tested by:

Ansgar Spiegler



2.2 Mandatory Tasks

Task: Integrate Prototype for Context Menus

Nr: #080

Description/Classes: | Integrate the prototype for Context Menus into Beagle.
Depends on: #010

Implemented by: Roman Langrehr

Tested by: Michael Vogt

Task: Integrate Prototype for Eclipse Extension Points

Nr: #090

Description/Classes: | Integrate the prototype for Eclipse Extension Points into Beagle.
Depends on: #020

Implemented by: Roman Langrehr

Tested by: Michael Vogt

Task: Prototype for GUI

Nr: #100

Description/Classes: | Integrate the prototype for Context Menus into Beagle.
Depends on: #030

Implemented by: Christoph Michelbach

Tested by: Micheal Vogt

Week 2 (2016-01-18 - 2016-01-24)

Task: Implement Evaluable Expressions
Nr: #110
Description/Classes: | Implement all subclasses of the interface EvaluableExpression.

(Package “Evaluable Expressions”)

Depends on:

Implemented by:

Annika Berger

Tested by:

Joshua Gleitze



2 Implemented Tasks

Task: Implement Measurement Results
Nr: #120
Description/Classes: | Implement ParameterisationDependentMeasurementResult and all

of its subclasses. (Package “Measurement”)

Depends on:

Implemented by: Roman Langrehr

Tested by: Annika Berger

Task: Implement Measurement Order

Nr: #125

Description/Classes: | Implement MeasurementOrder and CodeSection.

Depends on:

#040 (SEFF Classes)

Implemented by: Roman Langrehr

Tested by: Annika Berger

Task: Implement Blackboard Controllers

Nr: #130

Description/Classes: | Implement BeagleController and MeasurementController.

Depends on:

#060 (Blackboard) and #070 (Blackboard Views)

Implemented by: Christoph Michelbach
Tested by: Roman Langrehr

Task: Implement Final Judge
Nr: #137
Description/Classes: | Implement Final Judge.

Depends on:

#060 (Blackboard) and #120 (Measurement Results)
(Not depending on #160 (Fitness Function), because only method
stubs are needed here.)

Implemented by:

Christoph Michelbach

Tested by:

Joshua Gleitze



2.2 Mandatory Tasks

Week 3 (2016-01-25 - 2016-01-31)

Task: Kieker Measurement Tool
Nr: #140
Description/Classes: | Build a MeasurementTool executing Kieker.

Depends on:

#120 (Measurement Results), #060 (Blackboard), #070 (Blackboard
Views), #040 (SEFF classes) and #125 (Measurement Order).

Implemented by: Joshua Gleitze

Tested by: Annika Berger

Task: Averaging Measurement Result Analyser

Nr: #150

Description/Classes: | Build a MeasurementResultAnalyser which takes a

ConstantExpression as final EvaluableExpression for each
MeasurableSeffElement with the average of all available
measurement results.

Depends on:

#120 (Measurement Results), #060 (Blackboard), #070 (Blackboard
Views), #040 (SEFF classes) and #133 (tool helper classes).

Implemented by: Ansgar Spiegler

Tested by: Annika Berger

Task: Implement Evaluable Expression Fitness Function
Nr: #160

Description/Classes: | Implement a EvaluableExpessionFitnessFunction.
Depends on: #120 (Measurement Results) and #040 (SEFF classes)
Implemented by: Christoph Michelbach

Tested by: Annika Berger

Week 4 (2016-02-08 - 2016-02-14)

Task: PCM Repository Storer

Nr: #050B

Description/Classes: | Create a class that writes back all information from the blackboard to
the PCM.

Depends on: #040 (SEFF classes) #110 (Evaluable Expressions)

Implemented by: Ansgar Spiegler

Tested by: Annika Berger




2 Implemented Tasks

Tasks Not Covered by the Implementation Plan

Task: Facade
Nr: -
Description/Classes: | We realised that the communication between the GUI and Beagle

Core is complex because in addition to what we planned, the GUI has
to pass information about the project to analyse, e.g. to be able to
access the source code files. This is the reason for BeagleController
being now more than a controller. It is a facade with some additional
classes.

The UserConfiguration has been renamed to BeagleConfiguration
because it is involved in the facade, too.

Depends on:

Implemented by:

Joshua Gleitze, Chirstoph Michelbach, Roman Langrehr

Tested by:

Annika Berger

2.3 Optional Tasks

Week 1(2016-01-11 - 2016-01-17)

Task: Gradle

Nr: -

Description/Classes: | Our project can be build automatically using gradle.
Depends on: -

Implemented by: Joshua Gleitze




2.3 Optional Tasks

Week 3 (2016-01-25 - 2016-01-31)

Task: Fail API
Nr: -
Description/Classes: | On many parts of our project, errors which can’t be handled where

they emerge can occur. E.g. a source file from the project under test
can’t be read or doesn’t compile.

Therefore, we created the “Fail API”: Everywhere in our project, these
exceptions are reported to the “Fail API” and handled there. At the
moment, the Fail API only throws an exception but when we want
these exceptions to be reported to the user so the user can choose in a
dialogue whether to abort or to retry, this has to be changed only in
the Fail API and not on multiple places in the code.

Depends on:

Implemented by:

Joshua Gleitze

Tested by:

Michael Vogt

2.3.1 Preparation for Other Optional Tasks

We did a lot of preparation to implement the following optional tasks:

« Parametrisation of the results.

+ Using genetic programming for the analysis.

The classes for the parameterisation were created (but are empty) and are used by all
classes which don’t depend on the implementation of them.

For the genetic programming approach, we already created the fitness function.
The tools which combine results to the next generation can be added easily as new
ProposedExpressionAnalysers.






3 Delays

Most of the tasks were scheduled to be done during the first and seconds week which
lead to some small delays. Some of the tasks of the first week where finished in the
second week and some of the tasks in the second week were finished in the third week.
The tasks for the third week were therefore started at the end of the third week and we
used the empty week four for them, too.

Getting these delays was intentional because starting many tasks at the beginning
allowed us to recognise which tasks can be implemented fast and which tasks are
complicated and therefore need more time early in the implementation phase. These
tasks were:

« The PCM connection and the context menus because nobody in our team had
experience with the EMF framework and a lot of problem arose and caused delays.

« The Kieker measurement tool because we had to instrument the code on our
own.

11






4 Unit Tests

Everything that can be meaningfully tested with JUnit Tests is tested with JUnit tests.
The only parts not tested with JUnit tests are:

+ The GUI classes because it is not possible to test GUIs meaningfully with JUnit.
Instead, we created a document describing what should be done to test the GUI
manually.

« The extension points are not tested with JUnit tests because an automated
test would rather test the Eclipse extension point mechanism and not whether
we used it correctly. Instead, we created some Eclipse plugins with stubs for
MeasurementTool, MeasurementResultAnalyser, and ProposedExpressionAnalyser

which use the extension point of Beagle Core. Additionally, we created a plugin

having BeagleCore as a dependency which adds a button to Eclipse allowing the
user to see all tools loaded by Beagle Core (using Beagle Core’s classes for that).
For manual testing of the extension points, a document describing the process
and the relevant parts to be tested has been added.

Detailed information on each JUnit test can be found in the Javadoc of the particular
test.

13



	Contents
	Design Changes
	Implemented Tasks
	Changes to the Implementation Plan
	Mandatory Tasks
	Optional Tasks
	Preparation for Other Optional Tasks


	Delays
	Unit Tests

